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ABSTRACT

Manufacturing automation has been under intensive study due to increased
productivity. This research effort presents an algorithm on scheduling of an
AMR that traverses desired locations on a manufacturing floor. The
algorithm enables the AMR to find an efficient tour within the time
constraint, using which it can travel through all coordinates before
returning to the starting point or a specified stop, within a stipulated time
of thirty seconds on a PC.

With the number of AMRSs increasing, how to optimally schedule them in a
timely manner such that a large school of AMRs can finish all assigned
tasks within the shortest time also presents a significant challenge. We
Introduce a novel two-step algorithm for fast scheduling of AMRs that
perform prioritized tasks involving transportation of materials from a pick-
up point to a drop-off point on the factory floor.

The ultimate goal of this research is to develop a development platform
that can generate an optimal path to route the AMR in real time
considering both the shortest route and the task priority.

INTRODUCTION AND PROBLEM FORMULATION

The research effort focuses on the following problems:

a) Given a large set of coordinates (~1000) on a manufacturing floor and
the cost of travel, under arbitrary starting and ending points, find the
most efficient schedule for an AMR, such that it travels to all desired
points without repetitions. This problem can be interpreted as a
variation of the Traveling Salesman Problem (TSP), mathematically

defined as follows:
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subject to tl-qt ‘v'] = 1,2,..,.N,j#+ i

t{N+1} =1
where T = tq,t,, -, ty, t1 1S @ tour starting and ending at the same
point, and V'V is the point set of size N.
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Fig. 1. Example of AGV routing for drilling on a factory floor for
assembly line setup using a TSP solution

b) Scheduling of prioritized tasks for multiple AMRs within a
manufacturing facility in a timely manner. Specifically, we focus on
problems where 20 to 40 AMRs need to travel to about 1000 points to
complete prioritized tasks. The prioritized tasks involve transporting
materials from a specified pick-up location to a target drop-off location.
Here, each task is associated with a start point s, an end point e, and a
priority value p. Because the task is predefined on a ‘point space' and
the start and end points are not interchangeable, the search of an
optimal scheduling Is asymmetric.

c) Hardware setup for verification and |
validation of the designed algorithms. =
The prototype built for testing | 4
purposes is a 4-wheel ground vehicle NGl
designed for warehouse applications |
In which small cargo up to 5kg must g
be transported quickly and reliably. A §
photo of the prototype Is shown in E
Fig. 2. Fig. 2. AMR designed for use in testing

ALGORITHM

For problem (a), we propose the min-min algorithm:
Min-Min Algorithm with Maximum Triangle Initialization

Given a set of n points V" in a symmetric Euclidean space, the distance
between any two points is given by d(t;, t;), t;, t; € VV. TV is defined as a
complete tour, {t{,¢t,...,tn,t1},t; € VY, and D(TVN) is the tour length.
The proposed algorithm can then be broken down into three parts:

1. Selection of the Initial Triangle [1]:

a) Search for {t;,t,} € VN such that d(t;,t,) = max {tl, ti}.
{titjlevN

b) From the remaining points, select t; € VIN=2} such that D(T3) =
max|d(tq,t3) + d(ty, t3) + d(t1,t2)].

2. Min-Min lterative Addition: Fori = 3,4,---,N — 1

a) In Tt for each edge, {tx,tys1},k = 1,2,+, 0, t01y = ty, Select a
point, v; € V=8, such that the disturbance introduced is minimized,

e, A(ty, vj) = {vlerrl}i{g-i}}[d(tk'vl) + d(tr+1), V1) — Atk Eer1y) |-

b) Select {t,,, tym+13} and v; such that A(t,,, v;) = {mln }[A(tk, v))].
(NS Tt

c) Add point v; in tour T+ between points {t,, tyms1}-
3. Add pairwise exchange heuristics.
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Fig. 3. Evolution of min-min and Yatsenko’s [1] algorithms

For problem (b), we propose a novel two-stage algorithm:
(A) Asymmetric Clustering
Priority Separation

.
To ensure that there is no < g T
concentration of tasks of a single ~— o 51 =
priority assigned to a single g = T
AMR, we define the priority of =, ~ \,x;; x

each task as a 3rd coordinate. s -2 I o B B
Therefore, for each of the * TS| T
priority values, all tasks of that R

priority value are separated into
k clusters using the clustering
algorithm described later, after
which the ‘centroids’ of these
clusters are matched across
different priority values.

MKM Algorithm

The objective of clustering is to find k clusters within a priority level such
that if a pair of tasks is chosen from the same cluster, the sum of the cost of
travel from the end point of the first task to the start point of the second
task, and vice versa, should be small relative to tasks in other clusters.

Mathematically, the clustering problem can be defined as follows:
|A|

J(u, L) = Z (d5iﬂj(Li))2

i=1
where u IS the set of cluster ‘centroids’, representing a ‘center’ for that
particular cluster. L is the cluster label of each task in the set, A is the entire
task set, and u;(L;) Is the ‘centroid’ of the cluster to which the task §; € A

IS assigned.
Cluster Recombination

Each of the clusters is represented by its pseudo-task centroid. We combine
them to form k final clusters, each containing three separate clusters, one
from each priority level.

Fig. 4. Priority separation
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ALGORITHMS (contd.)

(B) Task Ordering for Single AMR

Once the task set has been clustered, each cluster can be handled by a
single AMR. Using the task distance matrix, a new model based learning
technique is proposed for task ordering with priorities for a single AMR.

Model Structure
4 N\

The model structure consists of
two recurrent neural network _ St=i | @ termiieuct Uhead | Ce
sections with LSTM (Long h f = o(Weuy + Urhe_y) n

- I t—1 0 = J(Wout + Uoht—l) t
Short-Term Memory) units. The > A >
] ] ; ce=tla+f.cq
first section of the model is the h, = o.tanh ¢,
encoder network, into which the \_ -/
task list for each vehicle is Iu
Inputted one at a time. It Is ‘

followed by the decoder Fig. 5. LSTM Cell
network which uses the encoded form of the task list to generate a
sequential list of tasks to be carried out by that particular vehicle.

Reward Function

The reward function for training the parameters of the neural network (®)
IS the negative of the priority adjusted cost between the tasks in the task
list, plus the negative of the travel cost between the last task and the depot
(without priority adjustment) as the vehicle has to return to the depot.

n—1

R(Q) = — Z Dtasks,p,ﬂiﬂiﬂ - Dtasks,QnQ1

i=1
The expected value of the reward is J(®) = E, q)R() where pg (€2) is
the probability of getting the task sequence Q given the parameter set &,
and takes into account the recurrent network. Policy gradient methods can
be used to maximize expected rewards, using the REINFORCE algorithm.

RESULTS

For problem (a), results are presented below:
(A) Shortest Tour Ending at Origin

Results on various data sets for the proposed algorithm are presented, and
the performance of the algorithm is compared to other commonly used
algorithms such as the insertion algorithms by Rosenkrantz et al. [2] and
the nearest neighbor heuristic [3].

Table 1. Results for Randomly Generated Instances

No. of Average Time (s) Average % Error (Standard Deviation)

Points FI NI CI NN  Min-Min FI NI CI NN  Min-Min

17.79 23.86 19.17 2454  13.90
(1.82) (2.76) (2.19) (4.62)  (1.90)
23.10 25.14 2061 2603  16.18
(125) (1.13) (1.33) (2.53)  (1.13)
2430 24.84 2060 2620 1625
(1.45) (1.66) (1.05) (3.37)  (1.13)
2480 25.00 2091 2586  17.00
(1.53)  (1.05) (1.16) (2.44)  (1.15)
25.19 2527 2049 25.69  17.44
(1.02) (1.22) (1.33) (3.06)  (1.28)

200 | 0.134 0.138 0.177 0.026 0.158

500 | 0.615 0.653 1.183 0.028 1.181

700 1.370 1.369 2.392 0.031 2.359

850 | 2.852 2554 5.382 0.038 5.376

1000 | 4.582 4.648 8.899 0.048 8.869

The results for the proposed algorithm and the optimal solution for a 60-
point data set is shown in Fig. 6 and Fig. 7.
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Fig. 6. Solution for 60-point data Fig. 7 Optimal solution for 60-
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RESULTS (contd.)
STHP, 101 Points

(B) Shortest Tour with Fixed/ ™[ <« &
Free Ends o \“w‘*ﬁ 6,
The proposed algorithm can be |/ \ ﬁfl _____ [\
extended to tours with arbitrary W "q _______ A “"} P
starting and ending points. An 7L oA bl /7
example of using the proposed 4| .~ N Y Y
method with 101 data points is R
shown in Fig. 8, where the starting *[ ~_ ™ /% [ ./ <

- - - v s é X , 8
location, A, and ending location, B, ! @ q% LN ™y — .
are marked by green and red \ < /7 7 .\
markers respectively. One can see [ L—" | [/ #7 |

that the algorithm enables the AGV ¢
to travel to the points with A and B
as the two defined end points.
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Fig. 8. Solution for 101-point data set with
fixed ends using proposed algorithm

For problem (b), results are presented below:
(A) Asymmetric Clustering

The MKM algorithm is compared to the asymmetric K-medoid method
(AKM D) and the results are shown in Fig. 9.
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Fig. 9. Comparison of MKM with AKMD methods
(B) Task Ordering

Results from the learning technique are presented in Fig. 10 and Fig. 11.
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Fig. 10. Test Case for ED Network
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Fig. 11. ED vs Simulated Annealing for different test sets
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